Laboratorio STEM Marino 5 novembre 2020 Prof. Carla Degli Esposti

► Operazioni negli insiemi finiti

Quando dobbiamo contare un insieme di persone (o di oggetti) siamo soliti metterci in fila o in cerchio. Quindi contiamo in modo lineare o circolare . Approfondiamo la questione.

a) I naturali

Abbiamo lavorato con due insiemi finiti. Continuiamo a farlo con insiemi di 12, 7, 4 numeri ed eseguiamo delle operazioni

b) Gli orologi

Ora lavoriamo con gli stessi insiemi numerici ma collocati su un orologio.

E' sempre un lavoro sul concetto di operazione ma cambia il tipo di operazione e il contesto nel quale si opera

Costruiamo gli orologi a 12 -7-4 numeri

Proviamo a eseguire le stesse operazioni, sull'orologio a 12 numeri, dove le 12 sono l'ora 0

Che succede? Lo trovo sempre il risultato?

Possiamo fare prove analoghe con gli orologi a 7 e a 4 numeri.

Cosa possiamo osservare?

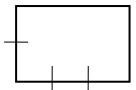
► PIEGATURE DI UN CERCHIO per dividerlo in parti uguali e costruire l'orologio.

- a) Disegna un cerchio di raggio 10 cm e ritaglialo
- b) Piegalo a metà, poi ripiegalo in due parallelamente alla prima piega. Se apri il cerchio avrai tre righe parallele.
- c) Ripeti questa operazione nell'altro verso in modo che le linee nuove si incrocino ad angolo retto con le altre.
- d) Apri il cerchio. Hai sei linee che toccano la circonferenza in 12 punti.
- e) Se con un righello unisci questi 12 punti ottieni un dodecagono : è regolare?
- f) Se salti un punto otterrai un esagono.
- g) Se salti 2 punti cosa ottieni? E se ne salti 3 ? E se ne salti 4 ? E 5 ?
- h) Ora scelti un punto e il suo diametralmente opposto. Unisci, con due segmenti, il punto considerato con i due punti a destra e a sinistra del suo opposto. Ripeti l'operazione per tutti i punti, cosa ottieni ?

Rettangoli di stecchini

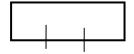
a) Costruzione di figure

Costruiamo con gli stecchini dei rettangoli dove una dimensione è una frazione dell'altra . Con questo materiale si visualizza meglio la figura

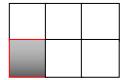

Esempio : h =
$$\frac{1}{2}$$
b b = $\frac{3}{2}$

b) Problemi

1. Il perimetro di un rettangolo misura 20 cm. Sapendo che l'altezza è $\frac{2}{3}$ della base


calcola la base e l'altezza.

Costruisci il rettangolo con gli stecchini e rispondi alle domande:

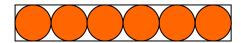


- a) Quanti stecchini hai adoperato?
- b) Quanti stecchini formano il perimetro del rettangolo ?
- c) Se il perimetro misura 20cm quanto misurerà 1 stecchino ?
- d) Per calcolare la base devi moltiplicare la misura di 1 stecchino per quante volte?
- e) E per calcolare l'altezza ?

2. La differenza fra la base e l'altezza di un rettangolo è di 8cm e la base è tripla dell'altezza. Determina le dimensioni.

- a) Quanti stecchini ha la base in più dell'altezza?
- b) Quanto misurano?
- c) Come puoi calcolare la misura di 1 stecchino ?
- d) Per calcolare la base devi moltiplicare la misura di 1 stecchino per quante volte?
- e) Quanto misura l'altezza ?
- f) Se il testo fosse stato: "La base di un rettangolo <u>supera</u> l'altezza di 8cm" al posto della differenza, come avresti risolto il problema?
 - 3. L'area di un rettangolo è di 24 cm² e una dimensione è $\frac{2}{3}$ dell'altra. Calcola base e

altezza


- a) In quanti quadrati uguali resta divisa l'area del rettangolo?
- b) Per quanto devi dividere l'area del rettangolo per ottenere l'area del quadratino grigio?
- c) La misura di uno stecchino coincide con il lato di un quadratino,come puoi calcolare tale misura?
- d) Come puoi calcolare la misura della base e dell'altezza ?

► Configurazioni numeriche

Numeri triangolari

Esercizio 1

Se disponi sul banco 6 dischetti, puoi costruire un rettangolo come questo

Prova ora a disporre i 6 dischetti sul banco per formare altre figure geometriche e poi disegnale sul quaderno.

Tra queste figure, c'è anche il triangolo?

Se prendi solo 5 dischetti, quali figure puoi costruire? c'è il triangolo?

Esercizio 2

Come hai potuto osservare, 6 è un numero triangolare.

Qual è il numero triangolare che precede il 6? e quello che lo segue?

Per rispondere costruisci le figure utilizzando i dischetti.

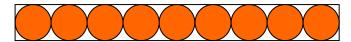
Come si fa a passare da un numero triangolare al suo successivo utilizzando i dischetti?

Esercizio 3

Con l'aiuto dei dischetti, prova a rispondere a queste domande:

- 1. Il doppio di un numero triangolare è ancora triangolare?
- 2. Il triplo di un numero triangolare, è un numero triangolare?

Esercizio 4


Sapendo che **il numero 1 è il primo numero triangolare**, scrivi i primi 5 numeri triangolari.

Sai trovare una regola che ti faccia trovare un numero triangolare qualsiasi, per esempio il decimo?

Numeri quadrati

Esercizio 1

Se disponi sul banco 9 dischetti, puoi costruire un rettangolo come questo

Prova ora a disporre i 9 dischetti sul banco per formare altre figure geometriche e poi disegnale sul quaderno.

Tra queste figure, c'è anche il quadrato?

Se prendi solo 8 dischetti, quali figure puoi costruire? c'è il quadrato?

Esercizio 2

Come hai potuto osservare, 9 è un numero quadrato.

Qual è il numero quadrato che precede il 9? e quello che lo segue?

Per rispondere costruisci le figure utilizzando i dischetti.

Come si fa a passare da un numero quadrato al suo successivo utilizzando i dischetti?

Esercizio 3

Con l'aiuto dei dischetti, prova a rispondere a queste domande:

- 1. Il doppio di un numero quadrato è ancora quadrato?
- 2. Il triplo di un numero quadrato, è un numero quadrato?

Esercizio 4

Sapendo che **il numero 1 è il primo numero quadrato**, scrivi i primi 5 numeri quadrati.

Sai trovare una regola che ti faccia trovare un numero quadrato qualsiasi, per esempio il decimo?

La Tavola Pitagorica

	2	3	4	5	6	7	8	9	10
2	X	6	8	10	12	14	16	18	20
3	6	B	12	15	18	21	24	27	30
4	8	12	R	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	3	56	63	70
8	16	24	32	40	48	56	X	72	80
9	18	27	36	45	54	63	72	×	90
10	20	30	40	50	60	70	80	90	760

Rispondi alle domande

- 1. Osserva i numeri che si trovano sulla diagonale principale e sulla diagonale secondaria della tavola pitagorica; hanno delle proprietà particolari? quali?
- 2. Nel primo quadrato evidenziato in alto a sinistra c'è il numero 1. La somma dei numeri contenuti nel secondo quadrato evidenziato è 1+2+2+4=9.
 - a) Calcola la somma dei numeri interni ai quadrati successivi e Scrivi in sequenza i risultati ottenuti. Cosa osservi?
 - b) Osserva i numeri "a squadra"; se addizioni i numeri di ogni squadra e li metti in sequenza, cosa osservi

►II problema dello spago Rettangoli isoperimetrici

1) L'insegnante prende uno spago legato, ben teso fra le due mani, e forma un rettangolo; poi avvicina le dita, allontanando le mani, e forma altri rettangoli.

A questo punto chiede agli studenti:

Come è il perimetro di questi rettangoli?

Tra i rettangoli si viene a formare anche il quadrato?

Nei rettangoli che si possono formare se la base diminuisce, cosa accade all'altezza ? Come risulta l'area dei rettangoli ?

- 2) Considera l'insieme dei rettangoli di perimetro 20cm. Costruiscine alcuni in cartoncino, disegna su un foglio di carta millimetrata gli assi cartesiani e disponi i rettangoli a libretto appoggiando le basi sull'asse x .
- Congiungi i vertici liberi; cosa formano?
- Se chiami x la base e y l'altezza di questi rettangoli , puoi scrivere x + y =
- Quale di questi rettangoli ha l'area massima?
- Considera le aree di questi rettangoli e su un piano cartesiano individua i punti che hanno per coordinata x la base e per coordinata y l'area del relativo rettangolo .Se unisci questi punti, cosa ottieni?